

SV3C CPTX MIPI C-PHY Generator

Ordering Information:

800 Village Walk #316 Guilford, CT 06437 Ph: 203-401-8093

Email orders to: sales@xsoptix.com
Fax orders to: 800-878-7282

Data Sheet

Table of Contents

Table of Contents	1
List of Figures	
List of Tables	
Introduction	
Overview	
Key Benefits	
Applications	
Features	
Overall Block Diagram and Signal Generation Concepts	4
Burst-Mode Pattern Definition and Generation	
Global Timing Parameter Controls	7
Manipulating Non-Payload Data Portions of a Transmission	8
Analog Parameter Controls	<u>c</u>
Automation	12
Physical Description and Pinout	13
Specifications	

List of Figures

Figure 1	High-level block diagram of SV3C CPTX 4-Lane C-PHY Generator.	1
Figure 2	Global waveform showing LP and HS C-PHY transmissions on one lane (3 wires)	5
Figure 3	Basic concept of packet transmission.	5
Figure 4	Distinction between Test Pattern length and packet size when transmitting fixed patterns in	
burst mod	de6	õ
Figure 5	Data definition method within the IntrospectESP software	õ
Figure 6	Global timing parameter control from within the cphyPattern component	7
Figure 7	Toggling 'hsDataMode' to symbol automatically converts the packet payload data into C-PHY	
symbol re	presentation	3
Figure 8	cphyPattern component showing how to manipulate non-payload portions of a transmission.8	3
Figure 9	Description of non-payload data and timings)
Figure 10	Description of non-payload data and timings)
Figure 11	(a) Single-ended waveform out of generator, and (b) differential signal seen by a C-PHY	
receiver c	onnected to two wires out of the generator10)
Figure 12	Illustration of HS common-mode signal control. Negative and positive voltages are produced	
	10)
Figure 13	Illustration of LP signal level control. Negative and positive voltages are produced	L
Figure 14	Differential AB and BC in which one of the eyes is closed with DCD injection13	L
Figure 15	Screen captures of the IntrospectESP user environment	2
Figure 16	Illustration of the SV3C CPTX C-PHY Generator connectors	3

List of Tables

Table 1	Physical Dimensions	13
	Listing of SV3C-CPTX connectors	
Table 3	Mapping of Lower MXP Connector (Lane Pinout)	14
Table 4	Mapping of Upper MXP Connector (Replica Signals)	14
Table 5	General Specifications	15
Table 6	Transmitter Characteristics	16
Table 7	Clocking Characteristics	17
Table 8	Pattern Handling Characteristics	17

Introduction

Overview

The SV3C-CPTX C-PHY Generator is an ultra-portable, high-performance instrument that enables exercising and validating MIPI C-PHY receiver ports. Capable of generating any traffic and being completely data-rate agile, the C-PHY generator includes analog parameter controls that enable gaining deep insights into receiver sensitivity performance and skew/jitter tolerance.

The C-PHY Generator operates using the highly versatile IntrospectESP Software environment. This environment allows for automating receiver tests such as voltage sensitivity or wire-skew tolerance. The environment also includes MIPI pattern compiler tools that enable the generation of complete DSI or CSI packets such as those characteristic of color bars or active image frames.

This document describes the electrical characteristics and key specifications of the C-PHY Generator. Please refer to IntrospectESP software documentation for additional operating instructions.

Key Benefits

- Any-rate operation and global timing parameter control
- Per-wire skew injection with < 1 ps resolution
- Per-wire voltage level control
- Per-wire LP generation
- State of the art programming environment based on the highly intuitive Python language
- Reconfigurable, protocol customization (on request)

Applications

- Parallel physical layer validation
- Interface test
- Plug-and-play system-level validation

Features

Overall Block Diagram and Signal Generation Concepts

The SV3C CPTX is a pattern generator capable of creating both LP and HS data streams across four C-PHY lanes simultaneously. Illustrated in Figure 1, the pattern generator architecture offers individual control over LP events, HS events, and global timing events on a per-wire basis. Thus, it provides complete electrical test coverage in a manner similar to AWG solutions while still being versatile enough to generate compliant CSI-2 packets and video frames from within a seamless software environment.

Built into the HS generators within the SV3C CPTX are dedicated hardware C-PHY mapper and encoder circuits as shown in Figure 1. This allows for tremendous ease of use as will be described in later sections of this document. Specifically, when defining packet transmissions, the user need not construct wire states or transitions manually (unless he/she so desires) and can just define 16-bit integer payload data.

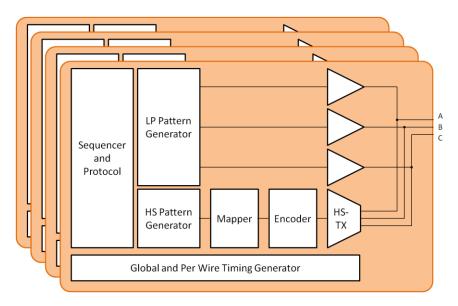


Figure 1 High-level block diagram of SV3C CPTX 4-Lane C-PHY Generator.

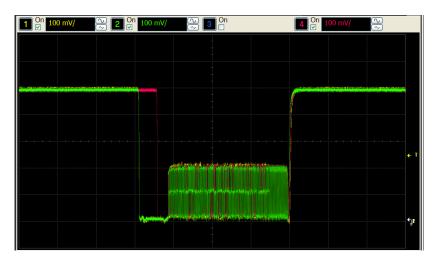


Figure 2 Global waveform showing LP and HS C-PHY transmissions on one lane (3 wires).

Figure 2 shows a packet transmission using the C-PHY generator. As can be seen, the packet starts from the STOP state, enters into HS mode, and then transmits three-phase encoded data on the three wires. In the next section, we will describe how one can define such packet transmissions both from a payload perspective and a timing/voltage stress perspective.

Burst-Mode Pattern Definition and Generation

In its most typical use case, the SV3C CPTX generator is programmed to generate payload data as shown in Figure 3. The payload data is highlighted in the figure, and it can consist of fixed Test Patterns (e.g. PRBS data) or active packets as part of a video frame.

When it comes to Test Pattern transmission, Figure 4 illustrates how packet length is not necessarily constrained to be equal to Test Pattern size in the SV3C CPTX generator. In fact, packet size can be much larger than Test Pattern length. For example, the Test Pattern can be a very short 16-bit or 32-bit sequence, and the packet size can be much larger. In this case, the Test Pattern is assumed to repeat continuously within a packet as shown in Figure 4.

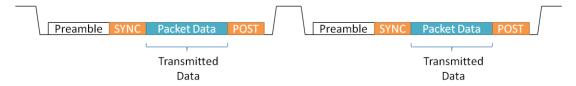


Figure 3 Basic concept of packet transmission.

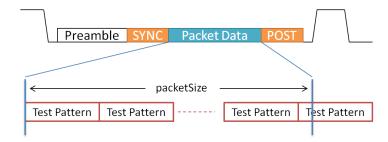


Figure 4 Distinction between Test Pattern length and packet size when transmitting fixed patterns in burst mode.

Defining the HS pattern to be transmitted is performed using the cphyPattern component within the IntrospectESP software as shown in Figure 5. Using this component, one is able to define the payload data within a transmission using high-level software commands. For example, shown in the figure is an array of 8 different 16-bit integer values representing counts from 1 to 8 and defined in the 'hsData' parameter of the cphyPattern component. When declared in this manner, the packet transmission in Figure 3 would play the 8 integer values within the active portion of the packet after automatic three-phase mapping and encoding in hardware.

In order to generate PRBS payload data within a packet, the 'hsDataMode' parameter of the cphyPattern component can be set to PRBS and the appropriate polynomial order and seed values can be selected.

Components	cphyPattem1 properties (class: MipiCphyPatte	
cphyPattem1	pattemType	packetLoop
	hsDataMode	integer
	hsPrbsOrder	
	hsPrbsSeed	
	hsData	[1, 2, 3, 4, 5, 6, 7, 8]
	hsSymbols	
	packet Size	1000
	split Data Across Lanes	False
	sameDataInEachPacket	True

Figure 5 Data definition method within the IntrospectESP software.

Global Timing Parameter Controls

Similar to payload data definition, the SV3C CPTX allows for controlling global timing parameters, and this is useful for automatically verifying HS receiver functionality under varying timing conditions. Figure 6 shows the cphyPattern component again with additional parameters related to packet timings. As can be seen, parameters such as preBeginNumUI and postNumUI allow for varying the timings associated with starting HS transmissions and ending them. Similarly, parameters such as Ip000Duration allow for varying the preparation (termination enable) period when testing receivers in burst mode.

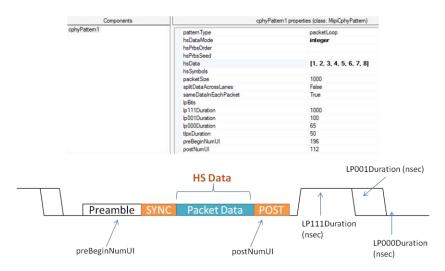


Figure 6 Global timing parameter control from within the cphyPattern component.

It is interesting at this stage to highlight another pattern generation feature of the SV3C CPTX. It was mentioned in the previous section that payload data can be entered in integer format. However, if there is a need to define data in symbol format, or – better yet – to quickly verify what an integer value corresponds to in C-PHY symbol format, then the Introspect ESP software can be used to automatically switch between the two number representations. Referring to Figure 7, the same 8 integer values that were declared in the 'hsData' parameter of Figure 5 are now displayed in C-PHY symbol format. This was achieved by simply toggling the 'hsDataMode' from 'integer' to 'symbol'. Note that each integer now maps to 7 symbols as per the C-PHY mapping technology.

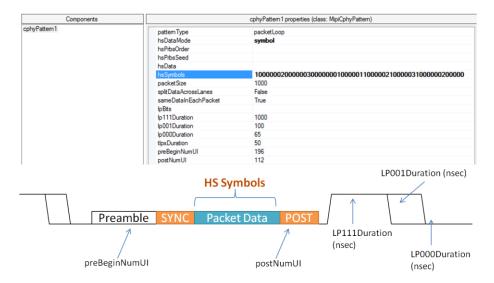


Figure 7 Toggling 'hsDataMode' to symbol automatically converts the packet payload data into C-PHY symbol representation.

Manipulating Non-Payload Data Portions of a Transmission

In previous sections, we described how to manipulate payload data and global timing parameters of packet transmissions. What remains is to manipulate non-payload portions of a transmission. Namely, the SV3C CPTX generator allows for sending invalid preamble data, sync word data, and post data. These are all additional parameters in the cphyPattern component as shown in Figure 8. Figure 9 and Figure 10 show how the timing parameters apply to these non-payload data transmissions.

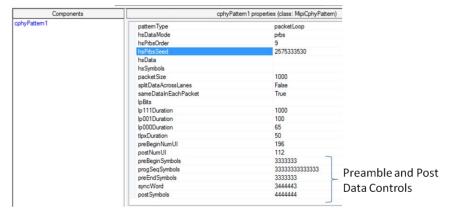


Figure 8 cphyPattern component showing how to manipulate non-payload portions of a transmission.

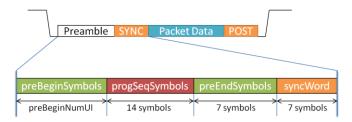


Figure 9 Description of non-payload data and timings.

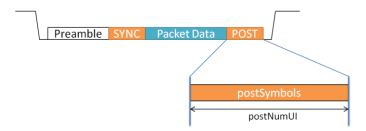


Figure 10 Description of non-payload data and timings.

Analog Parameter Controls

As required by the C-PHY standard, each wire out of the SV3C CPTX generator produces three-level single ended waveforms as shown in Figure 11(a). The span of the waveform (i.e. distance from the low level to the high level) is defined as single-ended voltage swing in this document, and it corresponds to the VOD specification in the C-PHY standard. Additionally, in order to enable receiver stressed eye testing, the generator includes common-mode control in which the entire waveform (low, mid, and high levels) is shifted up or down based on software commands (Figure 12). Similarly, all LP levels are programmable with fine resolution as shown in Figure 13. Such programmability is necessary for enabling various tests related to LP/HS interactions in C-PHY. Finally, advanced options exist for manipulating symmetry of the wire HS voltages (mid-level control), and these are all intended to help close the differential eye seen by a receiver (Figure 11 (b)).

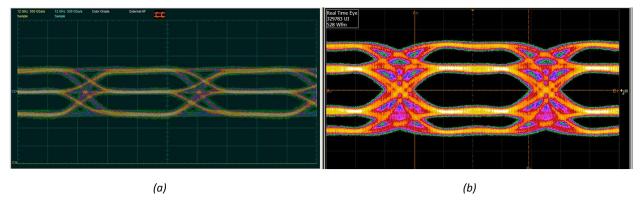


Figure 11 (a) Single-ended waveform out of generator, and (b) differential signal seen by a C-PHY receiver connected to two wires out of the generator.

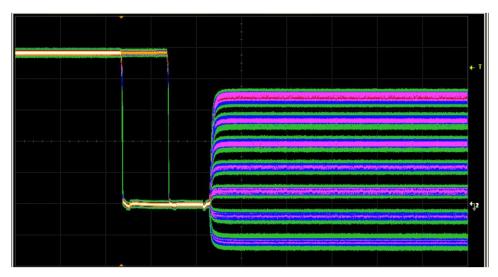


Figure 12 Illustration of HS common-mode signal control. Negative and positive voltages are produced.

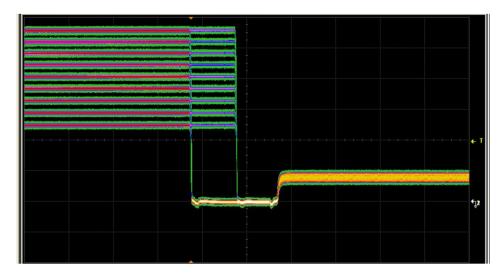


Figure 13 Illustration of LP signal level control. Negative and positive voltages are produced.

Coming back to receiver stressed eye testing, key to the SV3C CPTX Generator functionality is the ability to perturb timings on the wires within a C-PHY lane individually. This allows for receiver stress signal calibration or for receiver stress testing. Figure 14 shows an example of the AB and BC differential eyes in which DCD is injected on one of the pairs. As can be seen, high precision eye closure (fraction of the symbol interval) is achieved and can be used to gradually stress a receiver until failure is observed. The SV3C CPTX is able to create skew with a resolution of 1 ps or less and a range of about +/- 1 UI.

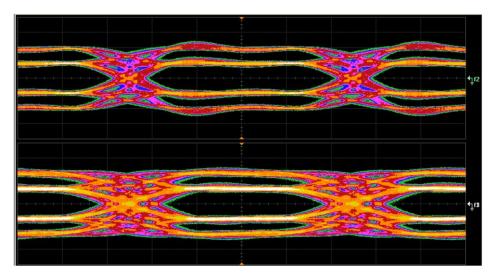


Figure 14 Differential AB and BC in which one of the eyes is closed with DCD injection.

Automation

The SV3C CPTX C-PHY Generator is operated using the award winning IntrospectESP Software. It features a comprehensive scripting language with an intuitive component-based design as shown in the screen shot in Figure 15(a). Component-based design is IntrospectESP's way of organizing the flexibility of the instrument in a manner that allows for easy program development. It highlights to the user only the parameters that are needed for any given task, thus allowing program execution in a matter of minutes. For further help, the software environment features automatic code generation for common tasks such as Measurement Loop generation as shown in Figure 15(b).

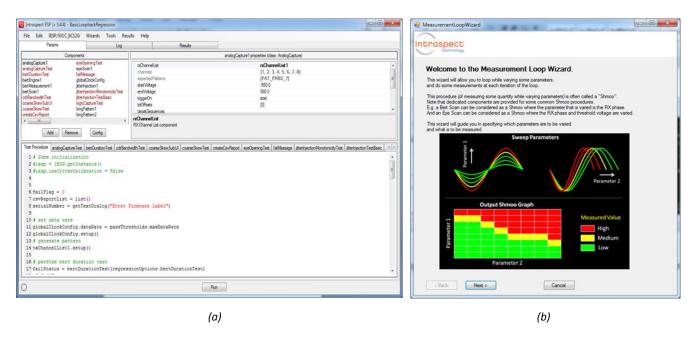


Figure 15 Screen captures of the IntrospectESP user environment.

Physical Description and Pinout

Figure 16 shows a diagram of the physical ports of the SV3C CPTX and Table 1 provides the physical dimensions for the unit. More detailed information on the SV3C-CPTX connectors and pinout is provided in Table 2.

Figure 16 Illustration of the SV3C CPTX C-PHY Generator connectors.

Table 1 Physical Dimensions

Parameter	Value
Length	9.5" (241.3 mm)
Width	4.25" (107.95 mm)
Height	1.3" (33.3 mm)
Weight	2 lb

Table 2 Listing of SV3C-CPTX connectors

Port / Indicator Name	Connector Type
Ref Clock In	SMP Differential Pair
Ref Clock Out A	SMP Differential Pair
Ref Clock Out B	SMP Differential Pair
TX Lane 1 – 4	MXP (Lower Connector)
Replica Signals	MXP (Upper Connector)
USB Port	USB
Power Switch / Connector	_

The lower MXP connector, as shown in Figure 16, provides the TX Lane 1-4 output signals. The pin mapping for this lower connector is provided in Table 3 below.

The upper MXP connector provides four replica signals which may be connected directly to an external measurement device for live monitoring. The pin mapping for this upper connector is provided in Table 4 below.

Table 3 Mapping of Lower MXP Connector (Lane Pinout)

1 9	Connector Pin Number	Corresponding TX Lane
2 10 3 11	1,2,3	Lane 1 (A,B,C)
4 12 5 13	9,10,11	Lane 2 (A,B,C)
6 14 7 15 8 16	4,5,6	Lane 3 (A,B,C)
8 16	12,13,14	Lane 4 (A,B,C)

Table 4 Mapping of Upper MXP Connector (Replica Signals)

	Connector Pin Number	Corresponding TX Lane
1 9 2 10 3 11	7	Lane 1 (A)
4 12 5 13	8	Lane 3 (A)
6 14 7 15	15	Lane 2 (A)
8 16	16	Lane 4 (A)

Specifications

Table 5 General Specifications Parameter	Value	Units	Description and Conditions
	value	Units	Description and Conditions
Application / Protocol Support			
Physical layer interface	C-PHY		
MIPI protocol	CSI/DSI		Flexible pattern architecture allows for the generation of encoded PHY data or entire CSI/DSI frames
LP/HS Handling	Automatic		Tester automatically generates LP and HS data
Ports			
Number of Transmitter Lanes	4		
Number of Dedicated Clock Outputs	2		Separate clock for providing reference to the DUT
Number of Dedicated Clock Inputs	1		Used as external Reference Clock input
Number of Trigger Input Pins	3		Armed in software to trigger the start of specific measurements
Number of Flag Output Pins	3		Armed in software to flag test completion or pass/fail criteria
Data Rates and Frequencies			
Minimum Data Rate	80	Msps	
Maximum Data Rate	3.0	Gsps	
Minimum External Input Clock Frequency	10	MHz	
Maximum External Input Clock Frequency	250	MHz	
Minimum LP State Period	43	ns	LP period resolution is based on programmed HS data rate. Compiler automatically selects period to satisfy user selection.
Maximum LP State Period	Software Programmable	ns	

Table 6 Transmitter Characteristics

Table 6 Transmitter Characteristics Parameter	Value	Units	Description and Conditions
HS Output Coupling			Pro
Output Single-Ended Impedance	50	Ω	
Output Impedance Tolerance	+/-5	Ω	
HS Voltage Performance			
Minimum Single-Ended Output Voltage Swing	0	mV	
Maximum Single-Ended Output Voltage Swing	400	mV	
Voltage Resolution	10	mV	
Accuracy of Voltage Programming	larger of: +/-1.5% of programmed value, and +/- 5mV	%, mV	
Rise and Fall Time	90*	ps	* Optimized for C-PHY receiver testing
Level Setting	Per-Wire		
Per Wire HS Jitter Performance			
Random Jitter Noise Floor	1.5	ps	Based on measurement with a high-bandwidth real- time scope and with first-order clock recovery
Minimum Frequency of Injected Deterministic Jitter	0.1	kHz	
Maximum Frequency of Injected Deterministic Jitter	80	MHz	
Frequency Resolution of Injected Deterministic Jitter	0.1	kHz	
Maximum Peak-to-Peak Injected Deterministic Jitter	2	UI	
Magnitude Resolution of Injected Deterministic Jitter	500	fs	Jitter injection is based on multi-resolution synthesizer, so this number is an effective resolution. Internal synthesizer resolution is defined in equivalent number of bits
Accuracy of Injected Jitter Magnitude	larger of: +/-2% of programmed value, and +/-2 ps	%, ps	
HS Lane-to-Lane Skew Performance			
Lane to Lane Integer-UI Minimum Skew	-20	UI	
Lane to Lane Integer-UI Maximum Skew	20	UI	
Effect of Skew Adjustment on Jitter Injection	None		
HS Intra-Lane Wire-to-Wire Skew Performance*			* Limitations in range exist at low data rates
Minimum Wire to Wire Skew	-1	UI	
Maximum Wire to Wire Skew	1	UI	
Skew Injection Resolution	1	ps	

LP Voltage Controls			
Minimum Programmable Logic High Level	600	mV	
Maximum Programmable Logic High Level	2000	mV	* Extended range under investigation
Minimum Programmable Logic Low Level	-100	mV	
Maximum Programmable Logic Low Level	600	mV	
Logic Level Control Resolution	1	mV	
Logic Level Accuracy	Larger of 5.0 mV		
	or 2.0 % of		
	programmed		
	value		

Table 7 Clocking Characteristics

Parameter	Value	Units	Description and Conditions
Internal Time Base			
Number of Internal Frequency References	1		
Frequency Resolution of Programmed Data Rate	1	Kbps	

Table 8 Pattern Handling Characteristics

Parameter	Value	Units	Description and Conditions
Preset Patterns			
Standard Built-In Patterns	PRBS.5		
	PRBS.7		
	PRBS.9		
	PRBS.11		
	PRBS.13		
	PRBS.15		
	PRBS.18		
	PRBS.23		
	PRBS.31		
Pattern Choice per Transmit	Per-transmitter		
Channel			
User-programmable Pattern Memory			
Individual Force Pattern	Per-transmitter		
Minimum Pattern Segment Size	16	bits	
Maximum Pattern Segment Size	4G	Bytes	
Maximum Number of Unique	128		
Pattern Segments			
Total Memory Space for	4G	Bytes	
Transmitters			

Pattern Sequencing		
Sequence Control	Loop infinite	
	Loop on count	Count is a number that is specified later in this section
	Play to end	
Number of Sequencer Slots per	16	Each pattern generator can string up to 16 different
Pattern Generator		segments together, each with its own repeat count.
Number of Entry Slots	1	Separate from above 16 segments.
Number of Exit Slots	1	Separate from above 16 segments and entry slot.
Maximum Loop Count per	2 ¹⁶ - 1	
Sequencer Slot		
Additional Pattern Characteristics		
C-PHY Encoder & Mapper	Per Lane	
Escape Mode Command Entry	Per Lane	
Pattern Switching	Wait to end of	When sourcing PRBS patterns, this option does not
	segment	exist.
	Immediate	

Revision Number	History	Date
1.0	Import from internal documentation	November 1, 2014
1.1	Formatting and typesetting	November 18, 2014
1.2	Updated figure 2, maximum data rate	November 20, 2014
1.3	Updated document template	June 10, 2015

The information in this document is subject to change without notice and should not be construed as a commitment by Introspect Technology. While reasonable precautions have been taken, Introspect Technology assumes no responsibility for any errors that may appear in this document.

